はてブログ

はてなブックマーク新着エントリーの過去ログサイトです。



タグ u++

新着順 人気順 5 users 10 users 50 users 100 users 500 users 1000 users
 
(1 - 3 / 3件)
 

Kaggleにおける「特徴量エンジニアリング」の位置づけ 〜『機械学習のための特徴量エンジニアリング』に寄せて〜 - u++の備忘録

2019/02/22 このエントリーをはてなブックマークに追加 214 users Instapaper Pocket Tweet Facebook Share Evernote Clip ワークフロー アンサンブル 本書 Kaggle 備忘録

はじめに 『機械学習のための特徴量エンジニアリング』の書誌情報 Kaggleのワークフロー 1. (探索的データ分析) 2. ベースラインモデルの構築 3. Validationの構築 4. 特徴量エンジニアリング 5. ハイパーパラメータ調整 6. アンサンブル 『機械学習のための特徴量エンジニアリング』の貢献箇所 Kaggle観点で本書をオ... 続きを読む

【Kaggleのフォルダ構成や管理方法】タイタニック用のGitHubリポジトリを公開しました - u++の備忘録

2018/12/28 このエントリーをはてなブックマークに追加 178 users Instapaper Pocket Tweet Facebook Share Evernote Clip Kaggle GitHubリポジトリ タイタニック 備忘録

はじめに Kaggleのタイタニック GitHubリポジトリ 執筆の経緯 大まかな方針 参考にした情報 フォルダ構成 configs data input output features logs models notebook scripts utils 計算の実行 Git管理 おわりに はじめに 本記事では、Kaggle用フォルダ構成や管理方法について、現時点での自己流の方法をまとめます。「... 続きを読む

KaggleのWinner solutionにもなった「K近傍を用いた特徴量抽出」のPython実装 - u++の備忘録

2018/06/23 このエントリーをはてなブックマークに追加 143 users Instapaper Pocket Tweet Facebook Share Evernote Clip Kaggle github.com 備忘録 自前 アルゴリズム

今回は、KaggleのWinner solutionにもなった「K近傍を用いた特徴量抽出」を紹介します。 Rでの実装は公開されていますが、Pythonでの実装は確認できなかったので、自前のPython実装も公開しています。 github.com アルゴリズムの概要 近傍数を、分類するクラス数をとした場合に、アルゴリズムは個の特徴量を生成します。... 続きを読む

 
(1 - 3 / 3件)