タグ RAGシステム
人気順 10 users 50 users 100 users 500 users 1000 usersSimRAGで専門分野にも強いRAGを作る
導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 今回は、ドキュメントを活用して専門分野に強いRAGを構築できるSimRAGについて紹介します。 サマリー SimRAGは、専門分野に関... 続きを読む
RAGの精度と速度を同時に向上「DIVA」による曖昧さ対策
導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 この記事では、曖昧な質問に対する回答の精度を高め、さらに処理速度を大幅に改善した手法「DIVA」について紹介します。 サマ... 続きを読む
RAGの「ベクトル検索」の弱みを、ナレッジグラフで補う
株式会社ナレッジセンスは、生成AIやRAGを使ったプロダクトを、エンタープライズ向けに開発提供しているスタートアップです。本記事では、RAGの性能を高めるための「HybridRAG」という手法について、ざっくり理解します。 この記事は何 この記事は、RAGシステムを専門用語に強くするための手法「HybridRAG」の論文[1]に... 続きを読む
RAGを専門用語に強くする手法「Golden-Retriever」
株式会社ナレッジセンスは、生成AIやRAGを使ったプロダクトを、エンタープライズ向けに開発提供しているスタートアップです。本記事では、RAGの性能を高めるための「Golden-Retriever」という手法について、ざっくり理解します。 この記事は何 この記事は、RAGシステムを専門用語に強くするための手法「Golden-Retriever... 続きを読む
RAG vs ファインチューニング(コーディング性能で比較)
はじめまして。ナレッジセンスの門脇です。生成AIやRAGシステムを活用したサービスを開発しています。本記事では、「RAG vs ファインチューニング」について、DSL(ドメイン固有言語)をコーディングする性能という観点から比較した論文を、ざっくりまとめます。 この記事は何 この記事は、RAG vs ファインチューニング... 続きを読む
RAGで人間の脳を再現。「HippoRAG」を理解する
はじめまして。ナレッジセンスの門脇です。生成AIやRAGシステムを活用したサービスを開発しています。本記事では、RAGの性能を高める手法である「HippoRAG」について、ざっくり理解します。 この記事は何 この記事は、RAGの新手法として最近注目されている「HippoRAG」の論文[1]について、日本語で簡単にまとめたもので... 続きを読む
RAGに質問分類させる「Adaptive-RAG」の解説
本記事では、「Adaptive-RAG」についてざっくり理解します。軽めの記事です。 株式会社ナレッジセンスでは普段の業務で、生成AIやRAGシステムを活用したサービスを開発しています。 この記事は何 この記事は、Adaptive系で現在、最も「コスパ」が良いとされる「Adaptive-RAG」の論文[1]について、日本語で簡単にまとめた... 続きを読む
RAGを複雑な質問に強くする手法「CoA」について
本記事では、「Chain-of-Abstraction (CoA) Reasoning」についてざっくり理解します。軽めの記事です。 株式会社ナレッジセンスでは普段の業務で、生成AIやRAGシステムを活用したサービスを開発しています。 この記事は何 この記事は、最近聞くようになった「Chain-of-Abstraction (CoA) Reasoning」の論文[1]について、... 続きを読む
Amazon Kendra と ChatGPT で RAG を実現する - Taste of Tech Topics
こんにちは、機械学習チーム YAMALEX の駿です。 YAMALEX は Acroquest 社内で発足した、会社の未来の技術を創る、機械学習がメインテーマのデータサイエンスチームです。 (詳細はリンク先をご覧ください。) 今回は Amazon Kendra と OpenAI ChatGPT を組み合わせてRAGシステムを構築してみます。 RAG とは Retrieval ... 続きを読む